Логарифмическая линейка – аналог персональных компьютеров. Линейка логарифмическая – забытое счетное устройство из прошлого? Виды логарифмических линеек

Первые логарифмические линейки изобрели англичане – математик-педагог Ульям Отред и учитель математики Ричард Деламейн. Летом 1630 года в гостях у Отреда побывал его друг и ученик Уильям Форстер – учитель математики из Лондона.

Друзья много говорили о математике, о правильной методике ее преподавания. Когда разговор зашел о шкале Гюнтера, Отред отозвался о ней критически. Он отметил, что много времени уходит на манипулирование двумя циркулями , при этом точность получается низкая.

Логарифмическая шкала, используемая с двумя циркулярами-измерителями, была построена валлийцем Эдмундом Гюнтером. Шкала, изобретенная им, представляла собой отрезок, на котором были нанесены деления, они соответствовали логарифмам чисел или тригонометрических величин. Пользуясь циркулями-измерителями можно было определить, какова сумма длин отрезков шкалы или их разность, и соответственно, согласно свойствам логарифмов, можно было найти произведение или частное. Общепринятое ныне обозначение log, а также термины котангенс и косинус были введены Эдмундом Гюнтером.

У первой линейки Отреда было две логарифмические шкалы, из которых одна легко смещалась относительно другой — неподвижной. Вторым инструментом было кольцо, внутри которого была ось, а на ней вращался круг. На наружной поверхности круга и внутри кольца можно было видеть логарифмические шкалы, «свернутые в окружность». Обеими линейками можно было пользоваться, не прибегая к циркулю.

В книге Отреда и Форстера под названием «Круги пропорций», вышедшей в Лондоне в 1632 году, было дано описание круговой логарифмической линейки, правда тогда там была другая конструкция. В книге «Дополнение к использованию инструмента, называемого «Кругами пропорций»», вышедшей в свет уже на следующий год, Форстер подробно описал прямоугольную логарифмическую линейку Отреда.

Право изготавливать линейки Ортреда, было дано Элиасу Аллену – известному лондонскому механику. Линейку, которая представляла из себя кольцо, с вращающимся кругом внутри, изобрел Ричард Деламейн (бывший ассистент Отреда). Подробное ее описание было дано в 1630 году в брошюре «Граммелогия или Математическое кольцо».

Деламейном было описано несколько вариантов логарифмических линеек, содержащих до 13 шкал. Были предложены и другие конструкции. Деламейн представил не только описания линеек, но и методику градуировки. Им были предложены способы проверки точности, а также приведены примеры, где он использовал свои устройства.

Скорее всего, Ричард Деламейн и Уильям Отред стали изобретателями своих логарифмических линеек, не завися друг от друга. А в 1654 году англичанином Робертом Биссакером была предложена конструкция прямоугольной логарифмической линейки. Ее общий вид и сохранился до нашего времени.

Устройство и принципы использования

Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется соответственно сложением и вычитанием их логарифмов . Первый вариант линейки разработал английский математик-любитель Уильям Отред в 1622 году .

Круговая логарифмическая линейка (логарифмический круг)

Простейшая логарифмическая линейка состоит из двух шкал в логарифмическом масштабе , способных передвигаться относительно друг друга. Более сложные линейки содержат дополнительные шкалы и прозрачный бегунок с несколькими рисками. На обратной стороне линейки могут находиться какие-либо справочные таблицы.

Для того чтобы вычислить произведение двух чисел, начало подвижной шкалы совмещают с первым множителем на неподвижной шкале, а на подвижной шкале находят второй множитель. Напротив него на неподвижной шкале находится результат умножения этих чисел:

Чтобы разделить числа, на подвижной шкале находят делитель и совмещают его с делимым на неподвижной шкале. Начало подвижной шкалы указывает на результат:

С помощью логарифмической линейки находят лишь мантиссу числа, его порядок вычисляют в уме. Точность вычисления обычных линеек - два-три десятичных знака. Для выполнения других операций используют бегунок и дополнительные шкалы.

Несмотря на то, что у логарифмической линейки отсутствуют функции сложения и вычитания, с её помощью можно осуществлять и эти операции, воспользовавшись следующими формулами:

Следует отметить, что, несмотря на простоту, на логарифмической линейке можно выполнять достаточно сложные расчёты. Раньше выпускались довольно объёмные пособия по их использованию.

Логарифмическая линейка в наши дни

Во всём мире, в том числе и в СССР , логарифмические линейки широко использовались для выполнения инженерных расчётов примерно до начала 1980-х годов, когда они были вытеснены калькуляторами .

Часы Breitling Navitimer


Wikimedia Foundation . 2010 .

Смотреть что такое "Логарифмическая линейка" в других словарях:

    логарифмическая линейка - счётная линейка — Тематики нефтегазовая промышленность Синонимы счётная линейка EN slide rule … Справочник технического переводчика

    - (счетная линейка) счетный инструмент для упрощения вычислений, с помощью которого операции над числами заменяются операциями над логарифмами этих чисел. Применяется при инженерных и практических расчетах, когда достаточна точность в 2 3 знака … Большой Энциклопедический словарь

    ЛОГАРИФМИЧЕСКАЯ ЛИНЕЙКА - ЛОГАРИФМИЧЕСКАЯ ЛИНЕЙКА, прибор, позволяющий быстро, хотя и не очень точно, производить математические вычисления (умножение, деление, возведение в степень, извлечение корня, нахождение логарифма числа, вычисление величины синуса и тангенса по… … Большая медицинская энциклопедия

    ЛОГАРИФМИЧЕСКАЯ ЛИНЕЙКА - (счётная линейка) счётный инструмент для быстрого выполнения ряда математических действий (умножение, деление, возведение в степень, извлечение корня, тригонометрические вычисления и др.), при этом операции над числами заменены операциями над… … Большая политехническая энциклопедия

    ЛОГАРИФМИЧЕСКАЯ ЛИНЕЙКА, счетный инструмент, состоящий из двух линеек с логарифмическими шкалами чисел, одна из которых скользит вдоль другой. До возникновения компьютерной вычислительной техники такие линейки были незаменимы при выполнении… … Научно-технический энциклопедический словарь

Изобретатель : Уильям Отред и Ричард Деламейн
Страна : Англия
Время изобретения : 1630 г.

Изобретателями первых логарифмических являются англичане - математик и педагог Уильям Отред (William Oughtred)и учитель математики Ричард Деламейн (Richard Delamaine).

Сын священника, Уильям Отред учился сначала в Итоне, а затем в Кембриджском королевском колледже, специализировался в области математики. В 1595 году Отред получил первую ученую степень и вошел в совет колледжа. Ему было тогда чуть больше 20 лет. Позже Отред стал совмещать занятия математикой с изучением богословия и в 1603 году стал священником. Вскоре он получил приход в Олбьюри, близ Лондона, где и прожил большую часть жизни. Однако настоящим призванием этого человека являлось преподавание математики.

Летом 1630 года у Отреда гостил его ученик и друг, лондонский учитель математики Уильям Форстер. Коллеги разговаривали о математике и, как бы сказали сегодня, о методике ее преподавания. В одной из бесед Отред критически отозвался о шкале Гюнтера, отметив, что манипулирование двумя отнимает много времени и дает низкую точность.

Валлиец Эдмунд Гюнтер построил логарифмическую шкалу, которая использовалась вместе с двумя циркулями-измерителями. Шкала Гюнтера представляла собой отрезок с делениями, соответствующими логарифмам чисел или тригонометрических величин. С помощью циркулей-измерителей определяли сумму или разность длин отрезков шкалы, что в соответствии со свойствами логарифмов позволяло находить произведение или частное.

Гюнтер ввел также общепринятое теперь обозначение log и термины косинус и котангенс.

Первая линейка Отреда имела две логарифмические шкалы, одна из которых могла смещаться относительно другой, неподвижной. Второй инструмент представлял собой кольцо, внутри которого вращался на оси круг. На круге (снаружи) и внутри кольца были изображены “свернутые в окружность” логарифмические шкалы. Обе линейки позволяли обходиться без циркулей.

В 1632 году в Лондоне вышла книга Отреда и Форстера “Круги пропорций” с описанием круговой логарифмической (уже иной конструкции), а описание прямоугольной логарифмической линейки Отреда дано в книге Форстера “Дополнение к использованию инструмента, называемого “Кругами пропорций”, вышедшей в следующем году. Права на изготовление своих линеек Отред передал известному лондонскому механику Элиасу Аллену.

Линейка Ричарда Деламейна (который был в свое время ассистентом Отреда), описанная им в брошюре “Граммелогия, или Математическое кольцо”, появившейся в 1630 году, тоже представляла собой кольцо, внутри которого вращался круг. Потом эта брошюра с изменениями и дополнениями издавалась еще несколько раз. Деламейн описал несколько вариантов таких линеек (содержащих до 13 шкал). В специальном углублении Деламейн поместил плоский указатель, способный двигаться вдоль радиуса, что облегчало использование линейки. Предлагались и другие конструкции. Деламейн не только представил описания линеек, но и дал методику градуировки, предложил способы проверки точности и привел примеры использования своих устройств.

Хорошо приспособленный к выполнению операций сложения и вычитания, абак оказался недостаточно эффективным прибором для выполнения операций умножения и деления. Поэтому открытие логарифмов и логарифмических таблиц Дж. Непером вначале XVII в., позволивших заменять умножение и деление соответственно сложением и вычитанием, явилось следующим крупным шагом в развитии вычислительных систем ручного этапа. Его «Канон о логарифмах» начинался так: «Осознав, что в математике нет ничего более скучного и утомительного, чем умножение, деление, извлечение квадратных и кубических корней, и что названные операции являются бесполезной тратой времени и неиссякаемым источником неуловимых ошибок, я решил найти простое и надежное средство, чтобы избавиться от них». В работе «Описание удивительной таблицы логарифмов» (1614) изложил свойства логарифмов, дал описание таблиц, правила пользования ими и примеры применений. Основанием таблицы логарифмов Непера является иррациональное число, к которому неограниченно приближаются числа вида (1 + 1/n) n при безграничном возрастании n. Это число называют неперовым числом и обозначают буквой е:

e=lim (1+1/n) n=2,71828…

Впоследствии появляется целый ряд модификаций логарифмических таблиц. Однако в практической работе их использование имеет ряд неудобств, поэтому Дж. Непер в качестве альтернативного метода предложил специальные счетные палочки (названные впоследствии палочками Непера), позволявшие производить операции умножения и деления непосредственно над исходными числами. В основу данного метода Непер положил способ умножения решеткой.

Наряду с палочками Непер предложил счетную доску для выполнения операций умножения, деления, возведения в квадрат и извлечения квадратного корня в двоичной системе счисления, предвосхитив тем самым преимущества такой системы счисления для автоматизации вычислений.

Так как же работают логарифмы Непера? Слово изобретателю: «Отбросьте числа, произведение, частное или корень которых необходимо найти, и возьмите вместо них такие, которые дадут тот же результат после сложения, вычитания и деления на два и на три». Иными словами, используя логарифмы, умножение можно упростить до сложения, деление превратить в вычитание, а извлечение квадратного и кубического корней - в деление на два и на три соответственно. Например, чтобы перемножить числа 3,8 и 6,61, определим с помощью таблицы и сложим их логарифмы: 0,58+0,82=1,4. Теперь найдем в таблице число, логарифм которого равен полученной сумме, и получим почти точное значение искомого произведения: 25,12. И никаких ошибок!

Логарифмы послужили основой создания замечательного вычислительного инструмента - логарифмической линейки, более 360 лет служащего инженерно-техническим работникам всего мира. Прообразом современной логарифмической линейки считается логарифмическая шкала Э. Гюнтера, использованная У. Отредом и Р. Деламейном при создании первых логарифмических линеек. Усилиями целого ряда исследователей логарифмическая линейка постоянно совершенствовалась и видом, наиболее близким к современному, она обязана 19-летнему французскому офицеру А. Манхейму.

Логарифмическая линейка - аналоговое вычислительное устройство, позволяющее выполнять несколько математических операций, в том числе, умножение и деление чисел, возведение в степень (чаще всего в квадрат и куб), вычисление логарифмов, тригонометрических функций и другие операции

Для того чтобы вычислить произведение двух чисел, начало подвижной шкалы совмещают с первым множителем на неподвижной шкале, а на подвижной шкале находят второй множитель. Напротив него на неподвижной шкале находится результат умножения этих чисел:

lg(x) + lg(y) = lg(xy)

Чтобы разделить числа, на подвижной шкале находят делитель и совмещают его с делимым на неподвижной шкале. Начало подвижной шкалы указывает на результат:

lg(x) - lg(y) = lg (x/y)

С помощью логарифмической линейки находят лишь мантиссу числа, его порядок вычисляют в уме. Точность вычисления обычных линеек - два-три десятичных знака. Для выполнения других операций используют бегунок и дополнительные шкалы.

Следует отметить, что, несмотря на простоту, на логарифмической линейке можно выполнять достаточно сложные расчёты. Раньше выпускались довольно объёмные пособия по их использованию.

Принцип действия логарифмической линейки основан на том, что умножение и деление чисел заменяется, соответственно, сложением и вычитанием их логарифмов.

Вплоть до 1970-х гг. логарифмические линейки были так же распространены, как пишущие машинки и мимеографы. Ловким движением рук инженер без труда перемножал и делил любые числа и извлекал квадратные и кубические корни. Чуть больше усилий требовалось для вычисления пропорций, синусов и тангенсов.

Украшенная дюжиной функциональных шкал, логарифмическая линейка символизировала сокровенные тайны науки. На самом деле, основную работу выполняли всего две шкалы, поскольку практически все технические расчеты сводились к умножению и делению.

Человеку, не знакомому с использованием логарифмической линейки, она покажется работой Пикассо. Она имеет как минимум три различных шкалы, почти на каждой из которых цифры расположены даже не на одинаковом расстоянии друг от друга. Но разобравшись, что к чему, вы поймете, почему логарифмическая линейка была такой удобной во времена до изобретения карманных калькуляторов. Правильно расположив нужные цифры на шкале, вы сможете выполнить умножение двух любых чисел гораздо быстрее, чем выполняя расчеты на бумаге.

Шаги

Часть 1

Общая информация

    Обратите внимание на промежутки между цифрами. В отличие от обычной линейки, расстояние между ними не одинаковое. Наоборот, оно определяется по особой «логарифмической» формуле, меньше с одной стороны и больше с другой. Благодаря этому вы можете совместить две шкалы нужным образом и получить ответ на задачу по умножению, как описано ниже.

    Метки на шкале. Каждая шкала логарифмической линейки имеет буквенное или символьное обозначение с левой или правой стороны. Ниже описаны общепринятые обозначения на логарифмических линейках:

    • Шкалы C и D похожи на одноразрядную вытянутую линейку, метки на которой расположены слева направо. Такая шкала называется «одноразрядной десятичной» шкалой.
    • Шкалы A и B - «двухразрядные десятичные» шкалы. Каждая состоит из двух небольших вытянутых линеек, расположенных впритык.
    • K - это трехразрядная десятичная шкала или три вытянутые линейки, расположенные впритык. Такая шкала имеется не на всех логарифмических линейках.
    • Шкалы C| и D| аналогичны C и D, но читаются справа налево. Часто они имеют красную окраску. Они присутствуют не на всех логарифмических линейках.
    • Логарифмические линейки бывают разные, поэтому и обозначение шкал может быть другим. На некоторых линейках шкалы для умножения могут быть помечены как A и B и находиться сверху. Независимо от буквенных обозначений, на многих линейках рядом со шкалами есть символ π, отмеченный в подходящем месте; в большинстве своем шкалы находятся напротив друг друга, либо в верхнем, либо в нижнем промежутке. Рекомендуем решить несколько простых задач на умножение, чтобы вы могли понять, правильно ли вы используете шкалы. Если произведение 2 и 4 не равняется 8, попробуйте использовать шкалы на другой стороне линейки.
  1. Научитесь понимать деления шкалы. Посмотрите на вертикальные линии на шкале C или D и ознакомьтесь с тем, как они читаются:

    • Основные цифры на шкале начинаются с 1 от левого края и продолжаются до 9, а затем завершаются еще одной 1 справа. Обычно все они нанесены на линейку.
    • Вторичные деления, обозначенные чуть меньшими вертикальными линиями, разделяют каждую основную цифру на 0,1. Вас не должно сбивать с толку, если они обозначены как «1, 2, 3»; все равно они соответствуют «1,1; 1,2; 1,3» и так далее.
    • Также могут присутствовать меньшие деления, которые обычно соответствуют шагу 0,02. Следите за ними внимательно, так как они могут исчезать в верхней части шкалы, где цифры находятся ближе друг к другу.
  2. Не ожидайте получить точные ответы. При чтении шкалы вам часто придется приходить к «наиболее вероятному предположению», когда ответ не будет попадать тютелька в тютельку. Логарифмическая линейка используется для быстрых подсчетов, а не для максимальной точности.

    • Например, если ответ находится между отметками 6,51 и 6,52, запишите то значение, которое вам кажется ближе. Если совсем непонятно, то запишите ответ как 6,515.

    Часть 2

    Умножение
    1. Запишите числа, которые вы будете умножать. Запишите числа, которые подлежат умножению.

      • В примере 1 этого раздела мы подсчитаем, сколько будет 260 x 0,3.
      • В примере 2 мы подсчитаем, сколько будет 410 x 9. Это немного сложнее, чем пример 1, поэтому сначала рассмотрим более простую задачу.
    2. Переместите десятичные точки для каждого числа. Логарифмическая линейка имеет цифры от 1 до 10. Переместите десятичную точку каждого умножаемого числа, чтобы они соответствовали своим значениям. После решения задачи мы переместим десятичную точку в ответе в нужное положение, что будет описано в конце раздела.

      • Пример 1: чтобы подсчитать 260 x 0.3, начинайте вместо этого с 2,6 x 3.
      • Пример 2: чтобы подсчитать 410 x 9, начинайте вместо этого с 4,1 x 9.
    3. Найдите меньшие цифры на шкале D, затем передвиньте к ней шкалу C. Найдите меньшую цифру на шкале D. Сдвиньте шкалу C таким образом, чтобы «1» слева (левый индекс) располагалась на одной линии с этой цифрой.

      • Пример 1: сдвиньте шкалу C таким образом, чтобы левый индекс совпал с 2,6 на шкале D.
      • Пример 2: сдвиньте шкалу C таким образом, чтобы левый индекс совпал с 4,1 на шкале D.
    4. Переместите металлический указатель ко второй цифре на шкале C. Указатель - это металлический предмет, который перемещается по всей линейке. Совместите указатель со второй цифрой вашей задачи на шкале C. Указатель будет указывать ответ к задаче на шкале D. Если он не перемещается так далеко, переходите к следующему шагу.

    5. Если указатель не перемещается к ответу, используйте правый индекс. Если указатель блокируется перегородкой в центре линейки или ответ расположен за пределами шкалы, то используйте немного иной подход. Сдвиньте шкалу C таким образом, чтобы правый индекс или 1 справа располагались над большим коэффициентом вашей задачи. Переместите указатель к другому коэффициенту по шкале C и прочтите ответ на шкале D.

      • Пример 2: переместите шкалу C таким образом, чтобы 1 справа совпала с 9 по шкале D. Переместите указатель к 4,1 по шкале C. Указатель показывает на шкалу D в точке между 3,68 и 3,7, поэтому наиболее вероятный ответ будет 3,69.
    6. Прикидывайте правильную десятичную точку. Независимо от производимого умножения, ваш ответ всегда будет считываться по шкале D, которая содержит лишь цифры от одного до десяти. Вам не обойтись без предположения и умственного подсчета, чтобы определить местонахождение десятичной точки в фактическом ответе.

      • Пример 1: нашей первоначальной задачей было 260 x 0,3, а линейка дала ответ 7,8. Округлите первоначальную задачу до удобных чисел и решите ее в голове: 250 x 0,5 = 125. Такой ответ гораздо ближе к 78, чем к 780 или 7,8, поэтому правильный ответ будет 78 .
      • Пример 2: нашей первоначальной задачей было 410 x 9, а линейка дала ответ 3,69. Прикиньте первоначальную задачу как 400 x 10 = 4000. Ближайшим числом будет 3690 , которое и станет фактическим ответом.

    Часть 3

    Возведение в квадрат и куб

    Часть 4

    Извлечение квадратного и кубического корня
    1. Запишите число в экспоненциальном представлении для извлечения квадратного корня. Как и всегда, на линейке есть только значения от 1 до 10, поэтому для извлечения квадратного корня вам потребуется записать число в экспоненциальном представлении .

      • Пример 3: для решения √(390) запишите задачу как √(3,9 x 10 2).
      • Пример 4: для решения √(7100) запишите задачу как √(7,1 x 10 3).
    2. Определите, какую сторону шкалы A необходимо использовать. Чтобы извлечь квадратный корень числа, для начала переместите указатель к этому числу по шкале A. Но так как шкала A нанесена дважды, необходимо решить, какую использовать.

      Находим ответ по шкале D. Прочитайте значение по шкале D, на которое наведен указатель. Прибавьте к нему "x10 n ". Для подсчета n возьмите исходную степень 10, округлите в меньшую сторону до ближайшего четного числа и разделите на 2.

      • Пример 3: соответствующее значение шкалы D при A=3,9 будет 1,975. Изначальная цифра в экспоненциальном представлении имела 10 2 . 2 уже четная, поэтому просто разделите на 2, чтобы получить 1. Окончательный ответ будет 1,975 x 10 1 = 19,75 .
      • Пример 4: соответствующее значение шкалы D при A=7,1 будет 8,45. Изначальная цифра в экспоненциальном представлении имела 10 3 , поэтому округлите 3 до ближайшего четного числа, 2, а затем разделите на 2, чтобы получить 1. Окончательный ответ будет 8,45 x 10 1 = 84,5 .
    3. Аналогичным способом извлекайте кубические корни по шкале K. Процесс извлечения кубического корня очень схож. Самое главное - определить, какую из трех шкал K следует использовать. Для этого разделите количество цифр вашего числа на три и узнайте остаток. Если остаток 1, используйте первую шкалу. Если 2, используйте вторую шкалу. Если 3, используйте третью шкалу (еще один способ - многократно считать от первой шкалы до третьей, пока не достигнете количества цифр в вашем ответе).

      • Пример 5: для извлечения кубического корня из 74 000 необходимо подсчитать количество цифр (5), разделить его на 3 и узнать остаток (1, остаток 2). Так как остаток 2, используем вторую шкалу (также можно выполнить счет по шкалам пять раз: 1–2–3–1–2 ).
      • Переместите курсор к 7,4 по второй шкале K. Соответствующее значение по шкале D будет примерно 4,2.
      • Так как 10 3 меньше 74 000, но 100 3 больше 74 000, ответ должен быть в рамках от 10 до 100. Переместите десятичную точку, чтобы получить 42 .
    • Логарифмическая линейка позволяет также выполнять расчет других функций, особенно если на ней имеется шкала логарифмов, шкала тригонометрических расчетов или другие специализированные шкалы. Попробуйте разобраться в них самостоятельно или почитайте информацию в интернете.
    • Можно использовать метод умножения для преобразования между двумя единицами измерения. Например, поскольку 1 дюйм = 2,54 сантиметра, задачу «преобразовать 5 дюймов в сантиметры» можно трактовать как пример умножения 5 x 2,54.
    • Точность логарифмической линейки зависит от количества различимых масштабных отметок. Чем больше длина линейки, тем выше ее точность.