Диаграмма состояния воды и правило фаз. Однокомпонентные системы Диаграмма равновесия воды

Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых АТ и ТС, вода существует в парообразном состоянии.

Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке X на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 °С) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.

Кривая АТ является кривой давления пара льда; такую кривую обычно называют кривой сублимации.

Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате

Рис. 6.5. Фазовая диаграмма воды.

разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).

В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (0 °С) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.

Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабилъном состоянии, описываемом точками этой кривой, называется переохлаждением.

На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.

Точка Т фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.

Иней может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.

Образование инея из росы. Роса - это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую ТС на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.

Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Т, т.е. больше атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую на рис. 6.5. В этих условиях образуется сухой иней.


Диаграмма состояния (или фазовая диаграмма) представляет собой графическое изображение зависимости между величинами, характеризующими состояние системы, и фазовыми превращениями в системе (переход из твердого состояния в жидкое, из жидкого в газообразное и т. д.).

Рис. 72. Схема структуры льда.

Рис. 73. Диаграмма состояния воды в области невысоких давлений.

Рис. 74. Цилиндр с водой, находящейся в равновесии с водяным паром.

Диаграммы состояния широко применяются в химии. Для однокомпонентных систем обычно используются диаграммы состояния, показывающие зависимость фазовых превращений от температуры и давления; они называются диаграммами состояния в координатах Р-Т.

На рис. 73 приведена в схематической форме (без строгого соблюдения масштаба) диаграмма состояния воды. Любой точке на диаграмме отвечают определенные значения температуры и давления.

Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару.

Рассмотрим каждую из кривых более подробно. Начнем с кривой ОА (рис. 73), отделяющей область пара от области жидкого состояния. Представим себе цилиндр, из которого удален воздух, после чего в него введено некоторое количество чистой, свободной от растворенных веществ, в том числе от газов, воды; цилиндр снабжен поршнем, который закреплен в некотором положении (рис. 74). Через некоторое время часть воды испарится и над ее поверхностью будет находиться насыщенный пар. Можно измерить его давление и убедиться в том, что оно не изменяется с течением времени и не зависит от положения поршня. Если увеличить температуру всей системы и вновь измерить давление насыщенного пара, то окажется, что оно возросло. Повторяя такие измерения при различных температурах, найдем зависимость давления насыщенного водяного пара от температуры. Кривая ОА представляет собой график этой зависимости: точки кривой показывают те пары значений температуры и давления, при которых жидкая вода и водяной пар находятся в равновесии друг с другом - сосуществуют. Кривая ОА называется кривой равновесия жидкость - пар или кривой кипения. В табл. 8 (стр. 202) приведены значения давления насыщенного водяного пара при нескольких температурах.

Попытаемся осуществить в цилиндре давление, отличное от равновесного, например, меньшее, чем равновесное. Для этого освободим поршень и поднимем его. В первый момент давление в цилиндре, действительно, упадет, но вскоре равновесие восстановится: испарится добавочно некоторое количество воды и давление вновь достигнет равновесного значения. Только тогда, когда вся вода испарится, можно осуществить давление, меньшее, чем равновесное. Отсюда следует, что точкам, лежащим на диаграмме состояния ниже или правее кривой ОА, отвечает область пара.

Таблица 8. Давление насыщенного водяного пара при различных температурах

Если пытаться создать давление, превышающее равновесное, то этого можно достичь, лишь опустив поршень до поверхности воды. Иначе говоря, точкам диаграммы, лежащим выше или левее кривой ОА, отвечает область жидкого состояния.

До каких пор простираются влево области жидкого и парообразного состояния? Наметим по одной точке в обеих областях и будем двигаться от них горизонтально влево. Этому движению точек на диаграмме отвечает охлаждение жидкости или пара при постоянном давлении. Известно, что если охлаждать воду при нормальном атмосферном давлении, то при достижении вода начнет замерзать. Проводя аналогичные опыты при других давлениях, придем к кривой ОС, отделяющей область жидкой воды от области льда. Эта кривая - кривая равновесия твердое состояние - жидкость, или кривая плавления, - показывает те пары значений температуры и давления, при которых лед и жидкая вода находятся в равновесии.

Двигаясь по горизонтали влево в области пара (в нижней части диаграммы), аналогичным образом придем к кривой ОВ. Это - кривая равновесия твердое состояние - пар, или кривая сублимации. Ей отвечают те пары значений температуры и давления, при которых в равновесии находятся лед и водяной пар.

Все три кривые пересекаются в точке О. Координаты этой точки - это единственная пара значений температуры и давления, при которых в равновесии могут находиться все три фазы: лед, жидкая вода и пар. Она носит название тройной точки.

Кривая плавления исследована до весьма высоких давлений. В этой области обнаружено несколько модификаций льда (на диаграмме не показаны).

Справа кривая кипения оканчивается в критической точке. При температуре, отвечающей этой точке, - критической температуре - величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.

Существование критической температуры установил в 1860 г. Д. И. Менделеев, изучая свойства жидкостей. Он показал, что при температурах, лежащих выше критической, вещество не может находиться в жидком состоянии. В 1869 г. Эндрьюс, изучая свойства газов, пришел к аналогичному выводу.

Критические температура и давление для различных веществ различны. Так, для водорода , , для хлора , , для воды , .

Одной из особенностей воды, отличающих ее от других веществ, является понижение температуры плавления льда с ростом давления (см. § 70). Это обстоятельство отражается на диаграмме. Кривая плавления ОС на диаграмме состояния воды идет вверх влево, тогда как почти для всех других веществ она идет вверх вправо.

Превращения, происходящие с водой при атмосферном давлении, отражаются на диаграмме точками или отрезками, расположенными на горизонтали, отвечающей . Так, плавление льда или кристаллизация воды отвечает точке D (рис. 73), кипение воды - точке Е, нагревание или охлаждение воды - отрезку DE и т. п.

Диаграммы состояния изучены для ряда веществ, имеющих научное или практическое значение. В принципе они подобны рассмотренной диаграмме состояния воды. Однако на диаграммах состояния различных веществ могут быть особенности. Так, известны вещества, тройная точка которых лежит давлении, превышающем атмосферное. В этом случае нагревание кристаллов при атмосферном давлении приводит не к плавленню этого вещества, а к его сублимации - превращению твердой фазы непосредственно в газообразную,


Глава 2. Правило фаз для однокомпонентной системы

Для однокомпонентной системы (К=1) правило фаз записывается в виде

С = 3-Ф . (9)

Если Ф = 1, то С =2 , говорят, что система бивариантна ;
Ф = 2, то С =1 , система моновариантна ;
Ф = 3, то С =0 , система нонвариантна .

Соотношение между давлением (р), температурой (Т) и объемом (V) фазы можно представить трехмерной фазовой диаграммой . Каждая точка (ее называют фигуративной точкой ) на такой диаграмме изображает некоторое равновесное состояние. Обычно удобнее работать с сечениями этой диаграммы плоскостью р - Т (при V=const) или плоскостью р -V (при T=const). Разберем более детально случай сечения плоскостью р - Т (при V=const).

2.1. Фазовая диаграмма воды

Фазовая диаграмма воды в координатах р - Т представлена на рис.1. Она составлена из 3 фазовых полей - областей различных (р,Т)-значений, при которых вода существует в виде определенной фазы - льда, жидкой воды или пара (обозначены на рис.1 буквами Л, Ж и П, соответственно). Эти фазовые поля разделены 3 граничными кривыми.

Кривая АВ - кривая испарения, выражает зависимость давления пара жидкой воды от температуры (или, наоборот, представляет зависимость температуры кипения воды от давления). Другими словами, эта линия отвечает двухфазному равновесию (жидкая вода) D (пар), и число степеней свободы, рассчитанное по правилу фаз, составляет С = 3 - 2 = 1. Такое равновесие называют моновариантным . Это означает, что для полного описания системы достаточно определить только одну переменную - либо температуру, либо давление, т.к. для данной температуры существует только одно равновесное давление и для данного давления - только одна равновесная температура.

При давлениях и температурах, соответствующих точкам ниже линии АВ, жидкость будет полностью испаряться, и эта область является областью пара. Для описания системы в данной однофазной области необходимы две независимые переменные (С = 3 - 1 = 2): температура и давление.

При давлениях и температурах, соответствующих точкам выше линии АВ, пар полностью сконденсирован в жидкость (С = 2). Верхний предел кривой испарения AB находится в точке В, которая называется критической точкой (для воды 374 o С и 218 атм). Выше этой температуры фазы жидкости и пара становятся неразличимыми (исчезает четкая межфазная граница жидкость/пар), поэтому Ф=1.

Линия АС - эта кривая возгонки льда (иногда ее называют линией сублимации), отражающая зависимость давления водяного пара надо льдом от температуры . Эта линия соответствует моновариантному равновесию (лед) D (пар) (С=1). Выше линии АС лежит область льда, ниже - область пара.

Линия АD -кривая плавления , выражает зависимость температуры плавления льда от давления и соответствует моновариантному равновесию (лед) D (жидкая вода). Для большинства веществ линия АD отклоняется от вертикали вправо, но поведение воды

Рис.1. Фазовая диаграмма воды

аномально: жидкая вода занимает меньший объем, чем лед . На основании принципа Ле Шателье можно предсказать, что повышение давления будет вызывать сдвиг равновесия в сторону образования жидкости, т.е. точка замерзания будет понижаться.

Исследования, проведенные Бриджменом для определения хода кривой плавления льда при высоких давлениях, показали, что существует семь различных кристаллических модификаций льда , каждая из которых, за исключением первой, плотнее воды . Таким образом, верхний предел линии AD - точка D, где в равновесии находятся лед I (обычный лед), лед III и жидкая вода. Эта точка находится при -22 0 С и 2450 атм (см.задачу 11).

Тройная точка воды (точка, отражающая равновесие трех фаз - жидкости, льда и пара) в отсутствие воздуха находится при 0,0100 o С и 4,58 мм рт.ст. Число степеней свободы С=3-3=0 и такое равновесие называют нонвариантным .

В присутствии воздуха три фазы находятся в равновесии при 1 атм и при 0 o С. Понижение тройной точки на воздухе вызвано следующим причинами:
1. растворимостью воздуха в жидкой воде при 1 атм, что приводит к снижению тройной точки на 0,0024 o С;
2. увеличением давления от 4,58 мм рт.ст. до 1 атм, которое снижает тройную точку еще на 0.0075 o С.

2.2. Фазовая диаграмма серы

Кристаллическая сера существует в виде двух модификаций – ромбической (S р) и моноклинной (S м). Поэтому возможно существование четырех фаз: ромбической, моноклинной, жидкой и газообразной (рис.2). Сплошные линии ограничивают четыре области: пара, жидкости и двух кристаллических модификаций. Сами линии отвечают моновариантным равновесиям двух соответствующих фаз. Заметьте, что линия равновесия моноклинная сера - расплав отклонена от вертикали вправо (сравните с фазовой диаграммой воды). Это означает, что при кристаллизации серы из расплава происходит уменьшение объема. В точках А, В и С в равновесии сосуществуют 3 фазы (точка А – ромбическая, моноклинная и пар, точка В – ромбическая, моноклинная и жидкость, точка С – моноклинная, жидкость и пар). Легко заметить, что есть еще одна точка О,

Рис.2. Фазовая диаграмма серы

в которой существует равновесие трех фаз – перегретой ромбической серы, переохлажденной жидкой серы и пара, пересыщенного относительно пара, равновесного с моноклинной серой. Эти три фазы образуют метастабильную систему , т.е. систему, находящуюся в состоянии относительной устойчивости . Кинетика превращения метастабильных фаз в термодинамически стабильную модификацию крайне медленна, однако при длительной выдержке или внесении кристаллов-затравок моноклинной серы все три фазы все же переходят в моноклинную серу, которая является термодинамически устойчивой в условиях, отвечающих точке О. Равновесия, которым соответствуют кривые ОА, ОВ и ОС (кривые – возгонки, плавления и испарения, соответственно) являются метастабильными.

В случае диаграммы серы мы сталкиваемся с самопроизвольным взаимным превращением двух кристаллических модификаций, которые могут протекать в прямом и обратном направлении в зависимости от условий. Такого типа превращения называются энантиотропными (обратимыми).

Взаимные превращения кристаллических фаз, которые могут протекать лишь в одном направлении , называются монотропными (необратимыми). Примером монотропного превращения является переход белого фосфора в фиолетовый.

2.3. Уравнение Клаузиуса - Клапейрона

Движение вдоль линий двухфазного равновесия на фазовой диаграмме (С=1) означает согласованное изменение давления и температуры, т.е. р=f(Т). Общий вид такой функции для однокомпонентных систем был установлен Клапейроном.

Допустим, мы имеем моновариантное равновесие (вода) D (лед) (линия AD на рис.1). Условие равновесия будет выглядеть так: для любой точки с координатами (р,Т), принадлежащей линии AD, воды (р,Т) = льда (р,Т). Для однокомпонентной системы =G/n, где G - свободная энергия Гиббса, а n - число молей (=const). Нужно выразить G=f(p,T). Формула G= H-T S для этой цели не годится, т.к. выведена для р,Т=const. В общем виде, Gє H-TS=U+pV-TS. Найдем дифференциал dG, используя правила для дифференциала суммы и произведения: dG=dU+p . dV+V . dp-T . dS-S . dT. Согласно 1-му закону термодинамики dU=dQ - dA, причем dQ=T . dS,a dA= p . dV. Тогда dG=V . dp - S . dT. Очевидно, что в равновесии dG воды /n=dG льда /n (n=n воды =n льда =сonst). Тогда v воды. dp-s воды. dT=v льда. dp-s льда. dT, где v воды, v льда - мольные (т.е. деленные на количество молей) объемы воды и льда, s воды, s льда - мольные энтропии воды и льда. Преобразуем полученное выражение в (v воды - v льда) . dp = (s воды - s льда) . dT, (10)

или: dp/dT= s фп / v фп, (11)

где s фп, v фп - изменения мольных энтропии и объема при фазовом переходе ((лед) (вода) в данном случае).

Поскольку s фп = H фп /Т фп, то чаще применяют следующий вид уравнения:

где H фп - изменения энтальпии при фазовом переходе,
v фп - изменение мольного объема при переходе,
Т фп - температура при которой происходит переход.

Уравнение Клапейрона позволяет, в частности, ответить на следующий вопрос: какова зависимость температуры фазового перехода от давления? Давление может быть внешним или создаваться за счет испарения вещества.

Пример 6. Известно, что лед имеет больший мольный объем, чем жидкая вода. Тогда при замерзании воды v фп = v льда - v воды > 0, в то же время H фп = H крист < 0, поскольку кристаллизация всегда сопровождается выделением теплоты. Следовательно, H фп /(T . v фп)< 0 и, согласно уравнению Клапейрона, производная dp/dT< 0. Это означает, что линия моновариантного равновесия (лед) D (вода) на фазовой диаграмме воды должна образовывать тупой угол с осью температур.

Пример 7. Отрицательное значение dp/dT для фазового перехода (лед) " (вода) означает, что под давлением лед может плавится при температуре ниже 0 0 С. Основываясь на этой закономерности, английские физики Тиндаль и Рейнольдс около 100 лет назад предположили, что известная легкость скольжения по льду на коньках связана с плавлением льда под острием конька ; образующаяся при этом жидкая вода действует как смазка. Проверим, так ли это, используя уравнение Клапейрона.

Плотность воды - в = 1 г/см 3 , плотность льда - л = 1.091 г/см 3 , молекулярная масса воды - М = 18 г/моль. Тогда:

V фп = М/ в -М/ л = 18/1.091-18/1= -1.501 см 3 /моль = -1.501 . 10 -6 м 3 /моль,

энтальпия плавления льда - Н фп = 6.009 кДж/моль,

Т фп = 0 0 С=273 К.

По уравнению Клапейрона:

dp/dT= - (6.009 . 10 3 Дж/моль)/(273К. 1.501 . 10 -6 м 3 /моль)=

146.6 . 10 5 Па/К= -146 атм/К.

Значит, для плавления льда при температуре, скажем, -10 0 С необходимо приложить давление 1460 атм. Но такой нагрузки лед не выдержит! Следовательно, изложенная выше идея не соответствует действительности . Реальная же причина плавления льда под коньком - теплота, выделяемая при трении.

Клаузиус упростил уравнение Клапейрона в случае испарения и возгонки , предположив, что:

2.4. Энтропия испарения

Мольная энтропия испарения S исп = H исп /Т кип равна разности S пара - S жидк. Поскольку S пара >> S жидк, то можно полагать S исп S пара. Следующее допущение состоит в том, что пар считают идеальным газом. Отсюда вытекает приблизительное постоянство мольной энтропии испарения жидкости при температуре кипения, называемое правилом Трутона.

Правило Трутона. Мольная энтропия испарения любой
жидкости составляет величину порядка 88 Дж/(моль. К).

Если при испарении разных жидкостей не происходит ассоциации или диссоциации молекул, то энтропия испарения будет приблизительно одинакова. Для соединений, образующих водородные связи (вода, спирты), энтропия испарения больше 88 Дж/(моль. К).

Правило Трутона позволяет определить энтальпию испарения жидкости по известной температуре кипения, а затем по уравнению Клаузиуса-Клапейрона определить положение линии моновариантного равновесия жидкость-пар на фазовой диаграмме.

Состояния воды .

Вода может находиться в трех агрегатных состояниях, или фазах,- твердом (лед), жидком (собственно вода), газообразном (водяной пар). Очень важно, что при реально существующих на Земле диапазонах атмосферного давления и температуры вода мо­жет находиться одновременно в разных агрегатных состояниях. В этом отношении вода существенно отличается от других физиче­ских веществ, находящихся в естественных условиях преимуще­ственно либо в твердом (минералы, металлы), либо в газообразном (О 2 , N 2 , СО 2 и т.д.) состоянии.

Изменения агрегатного состояния вещества называют фазовыми переходами. В этих случаях свойства вещества (например, плот­ность) скачкообразно изменяются. Фазовые переходы сопровожда­ются выделением или поглощением энергии, называемой теплотой фазового перехода («скрытой теплотой»).

Зависимость агрегатного состояния воды от давления и темпера­туры выражается диаграммой состояния воды, или фазовой ди­аграммой (рис. 5.1.1.).

Кривая ВВ"О на рис 5.1.1. носит название кривой плавления. При переходе через эту кривую слева направо происходит плавление

Рис. 5.1.1. Диаграмма состояния воды

I – VIII - различные модификации льда

льда, а справа налево - ледообразование (кристаллизация воды). Кривая ОК называется кривой парообразования. При переходе через эту кривую слева направо наблюдается кипение воды, а справа налево - конденсация водяного пара. Кривая АО носит название кривой сублимации, или кривой возгонки. При пересечении ее слева направо происходит испарение льда (возгонка), а справа налево - конденсация в твердую фазу (или сублимация).

В точке О (так называемой тройной точке, при давлении 610 Па и температуре 0,01° С или 273,16 К) вода одновременно находится во всех трех агрегатных состояниях.

Температура, при которой происходит плавление льда (или крис­таллизация воды), называется температурой или точкой плавления Т пл. Эту температуру можно называть также температурой или точкой замерзания Т зам.

С поверхности воды, а также льда и снега постоянно отрывается и уносится в воздух некоторое количество молекул, образующих молекулы водяного пара. Одновременно с этим часть молекул водя­ного пара возвращается обратно на поверхность воды, снега и льда. Если преобладает первый процесс, то идет испарение воды, если второй - конденсация водяного пара. Регулятором направленности и интенсивности этих процессов служит дефицит влажности - разность упругости водяного пара, насыщающего пространство при данных давлении воздуха и температуре поверхности воды (снега, льда), и упругости фактически содержащегося в воздухе водяного пара, т.е. абсолютной влажности воздуха. Содержание в воздухе насыщенного водяного пара и его упругость увеличиваются с ростом температуры (при нормальном давлении) следующим образом. При температуре О°С содержание и упругость насыщенного водяного пара равны соответственно 4,856 г/м3 и 6,1078 гПа, при температуре 20°С - 30,380 г/м3 и 23,373 гПа, при 40°С - 51,127 г/м3 и 73,777 гПа.

Испарение с поверхности воды (льда, снега), а также влажной почвы идет при любой температуре и тем интенсивнее, чем больше дефицит влажности. С ростом температуры упругость водяного пара, насыщающего пространство, растет, и испарение ускоряется. К уве­личению испарения приводит и возрастание скорости движения воздуха над испаряющей поверхностью (т.е. скорости ветра в при­родных условиях), усиливающее интенсивность вертикального массо- и теплообмена.

Когда интенсивное испарение охватывает не только свободную поверхность воды, но и ее толщу, где испарение идет с внутренней поверхности образующихся при этом пузырьков, начинается процесс кипения. Температура, при которой давление насыщенного водяного пара равно внешнему давлению, называется температурой или точ­кой кипения T кип.

При нормальном атмосферном давлении (1,013 105 Па = 1,013 бар = 1 атм = 760 мм рт. ст.) точки замерзания воды (плавления льда) и кипения (конденсации) соответствуют по шкале Цельсия 0 и 100°.

Температура замерзания Т зам и температура кипения воды Т кип зависят от давления (см. рис. 3.9.2.). В диапазоне изменения давления от 610 до 1,013 105 Па (или 1 атм) температура замерзания немного понижается (от 0,01 до 0° С), затем при росте давления приблизи­тельно до 6 107 Па (600 атм) Т зам падает до -5° С, при увеличении давления до 2,2 108 Па (2 200 атм) Т зам уменьшается до -22° С. При дальнейшем увеличении давления Т зам начинает быстро возра­стать. При очень большом давлении образуются особые «модифи­кации» льда (II-VIII), отличающиеся по своим свойствам от обычного льда (льда I).

При реальном атмосферном давлении на Земле пресная вода замерзает при температуре около 0° С. На максимальных глубинах в океане (около 11 км) давление превышает 108 Па, или 1 000 атм (увеличение глубины на каждые 10 м увеличивает давление прибли­зительно на 105 Па, или 1 атм). При таком давлении температура замерзания пресной воды была бы около -12° С.

На снижение температуры замерзания воды

оказывает влияние ее соленость.

1.4). Увеличение солености на каждые 10‰ снижает Т зам приблизительно на 0,54° С:

Т зам = -0,054 S.

Температура кипения с умень­шением давления снижается (см. рис. 3.9.2.). Поэтому на боль­ших высотах в горах вода кипит при температуре ниже, чем 100° С. При росте давления Т кип возраста­ет до так называемой «критиче­ской точки», когда при р = 2,2 107 Па и Т кип = 374° С вода одновременно имеет свойства и жидкости и газа.

Диаграмма состояния воды иллюстрирует две «аномалии» во­ды, оказывающие решающее вли­яние не только на «поведение» во­ды на Земле, но и на природные условия планеты в целом. По сравнению с веществами, представляющими собой соединения водо­рода с элементами, находящимися в Периодической таблице Менде­леева в одном ряду с кислородом,- теллуром Те, селеном Se и серой S, температура замерзания и кипения воды необычно высока. Учиты­вая закономерную связь температуры замерзания и кипения с массо­вым числом упомянутых веществ, следовало бы ожидать у воды значения температуры замерзания около -90° С, а температуры кипения около -70° С. Аномально высокие значения температуры замерзания и кипения предопределяют возможность существования воды на планете как в твердом, так и в жидком состоянии и служат определяющими условиями основных гидрологических и других при­родных процессов на Земле.

Плотность воды

Плотность - главнейшая физическая характеристика любого ве­щества. Она представляет собой массу однородного вещества, при­ходящуюся на единицу его объема:

где m - масса, V - объем. Плотность р имеет размерность кг/м 3 .

Плотность воды, как и других веществ, зависит прежде всего от температуры и давления (а для природных вод - еще и от содержа­ния растворенных и тонкодисперсных взвешенных веществ) и скач­кообразно изменяется при фазовых переходах.. При повышении температуры плотность воды, как и любого другого вещества, в большей части диапазо­на изменения температуры уменьшается, что связано с увеличением расстояния между молекулами при росте температуры. Эта законо­мерность нарушается лишь при плавлении льда и при нагревании воды в диапазоне от 0 до 4° (точнее 3,98° С). Здесь отмечаются еще две очень важные «анатомии» воды: 1) плотность воды в твердом состоянии (лед) меньше, чем в жидком (вода), чего нет у подавляю­щего большинства других веществ; 2) в диапазоне температуры воды от 0 до 4° С плотность воды с повышением температуры не уменьшается, а увеличивается. Особенности изменения плотности воды связаны с перестройкой молекулярной структуры воды. Эти две «аномалии» воды имеют огромное гидрологическое значение: лед легче воды и поэтому «плавает» на ее поверхности; водоемы обычно не промерзают до дна, так как охлажденная до температуры ниже 4° пресная вода становится менее плотной и поэтому остается в повер­хностном слое.

Плотность льда зависит от его структуры и температуры. Порис­тый лед может иметь плотность, намного меньшую, чем указано в таблице1.1. Еще меньше плотность снега. Свежевыпавший снег имеет плотность 80-140 кг/м 3 ,плотность слежавшегося снега постепенно увеличивается от 140-300 (до начала таяния) до 240-350 (в нача­ле таяния) и 300-450 кг/м 3 (в конце таяния). Плотный мокрый снег может иметь плотность до 600-700 кг/м 3 . Снежинки во время таяния имеют плотность 400-600, лавинный снег 500-650 кг/м 3 . Слой воды, образующийся при таянии льда и снега, зависит от толщины слоя льда или снега и их плотности. Запас воды в льде или в снеге равен:

h в = ah л р л /р

где h л - толщина слоя льда или снега, р л - их плотность, р - плотность воды, а - множитель, определяемый соотношением раз­мерностей h в и h л: если слой воды выражается в мм, а толщина льда (снега) в см, то а=10, при одинаковой размерности а=1.

Плотность воды изменяется также в зависимости от содержания в ней растворенных веществ и увеличивается с ростом солености (рис. 1.5). Плотность морской воды при нормальном давлении может достигать 1025-1033 кг/м 3 .

Совместное влияние температуры и солености на плотность воды при атмосферном давлении выражают с помощью так называемого уравне­ния состояния морской воды. Такое уравнение в самом простом линейном виде записывают следующим образом:

р = р о (1 - α 1 Т + α 2 S)

где Т - температура воды, °С, S - соленость воды, ‰, р о - плотность воды при Т = 0 и S = 0, α 1 и α 2 - параметры.

Увеличение солености приводит также к понижению температуры наи­большей плотности (°С) согласно формуле

Т наиб.пл = 4 - 0,215 S.

Рис. 5.2.1. Зависимость плотности воды при нормальном атмосферном давлении от температуры и солености воды.

Увеличение солености на каждые 10‰ снижает Т наиб.пл приблизительно на 2° С. Зависимость температуры наиболь­шей плотности и температуры замерзания от солености воды иллюс­трирует так называемый график Хелланд-Хансена (см. рис. 3.10.1.).

Соотношения между температурами наибольшей плотности и за­мерзания влияют на характер процесса охлаждения воды и верти­кальной конвекции - перемешивания, обусловленного различиями в плотности. Охлаждение воды в результате теплообмена с воздухом приводит к увеличению плотности воды и, соответственно, к опуска­нию более плотной воды вниз. На ее место поднимаются более теплые и менее плотные воды. Происходит процесс вертикальной плотностной конвекции. Однако для пресных и солоноватых вод, имеющих соленость менее 24,7‰, такой процесс продолжается лишь до момента достижения водой температуры наибольшей плотности (см. рис. 1.4). Дальнейшее охлаждение воды ведет к уменьшению ее плотности, и вертикальная конвекция прекращается. Соленые воды при S>24,7‰ подвержены вертикальной конвекции вплоть до мо­мента их замерзания.

Таким образом, в пресных или солоноватых водах зимой в при­донных горизонтах температура воды оказывается выше, чем на поверхности, и, согласно графику Хелланд-Хансена, всегда выше температуры замерзания. Это обстоятельство имеет огромное значе­ние для сохранения жизни в водоемах на глубинах. Если бы у воды температуры наибольшей плотности и замерзания совпадали бы, как у всех других жидкостей, то водоемы могли промерзать до дна, вызывая неизбежную гибель большинства организмов.

«Аномальное» изменение плотности воды при изменении темпера­туры влечет за собой такое же «аномальное» изменение объема воды: с возрастанием температуры от 0 до 4° С объем химически чистой воды уменьшается, и лишь при дальнейшем повышении температуры - увеличивается; объем льда всегда заметно больше объема той же массы воды (вспомним, как лопаются трубы при замерзании воды).

Изменение объема воды при изменении ее температуры может быть выражено формулой

V T1 = V T2 (1 + β DT)

где V T1 - объем воды при температуре Т1, V T2 - объем воды при T2, β - коэффициент объемного расширения, принимающий отрица­тельные значения при температуре от 0 до 4° С и положительные при температуре воды больше 4° С и меньше 0° С (лед) (см. табл. 1.1),

Некоторое влияние на плотность воды оказывает также и давле­ние. Сжимаемость воды очень мала, но она на больших глубинах в океане все же сказывается на плотности воды. На каждые 1000 м глубины плотность вследствие влияния давления столба воды возрастает на 4,5-4,9 кг/м 3 . Поэтому на максимальных океанских глубинах (около 11 км) плотность воды будет приблизительно на 48 кг/м 3 больше, чем на поверхности, и при S = 35‰ составит около 1076 кг/м 3 . Если бы вода была совершенно несжимаемой, уровень Мирового океана был бы на 30 м выше, чем в действительности. Малая сжимаемость воды позволяет существенно упростить гидро­динамический анализ движения природных вод.

Влияние мелких взвешенных наносов на физические характери­стики воды и, в частности, на ее плотность изучено еще недостаточ­но. Считают, что на плотность воды могут оказывать влияние лишь очень мелкие взвеси при их исключительно большой концентрации, когда воду и наносы уже нельзя рассматривать изолированно. Так, некоторые виды селей, содержащие лишь 20-30% воды, представляют собой по существу глинистый раствор с повышенной плотно­стью. Другим примером влияния мелких наносов на плотность могут служить воды Хуанхэ, втекающие в залив Желтого моря. При очень большом содержании мелких наносов (до 220 кг/м 3) речные мутные воды имеют плотность на 2-2,5 кг/м 3 больше, чем морские воды (их плотность при фактической солености и температуре около 1018 кг/м 3). Поэтому они «ныряют» на глубину и опускаются по морскому дну, формируя «плотный», или «мутьевой», поток.

Эта диаграмма показана на рис. 6.5. Области фазовой диаграммы, ограниченные кривыми, соответствуют тем условиям (температурам и давлениям), при которых устойчива только одна фаза вещества. Например, при любых значениях температуры и давления, которые соответствуют точкам диаграммы, ограниченным кривыми ВТ и ТС, вода существует в жидком состоянии. При любых температуре и давлении, соответствующих точкам диаграммы, которые расположены ниже кривых AT и ТС, вода существует в парообразном состоянии.

Кривые фазовой диаграммы соответствуют условиям, при которых какие-либо две фазы находятся в равновесии друг с другом. Например, при температурах и давлениях, соответствующих точкам кривой ТС, вода и ее пар находятся в равновесии. Это и есть кривая давления пара воды (см. рис. 3.13). В точке Л" на этой кривой жидкая вода и пар находятся в равновесии при температуре 373 К (100 0C) и давлении 1 атм (101,325 кПа); точка X представляет собой точку кипения воды при давлении 1 атм.

Кривая AT является кривой давления пара льда; такую кривую обычно называют кривой сублимации.

Кривая ВТ представляет собой кривую плавления. Она показывает, как давление влияет на температуру плавления льда: если давление возрастает, температура плавления немного уменьшается. Такая зависимость температуры плавления от давления встречается редко. Обычно возрастание давления благоприятствует образованию твердого вещества, как мы убедимся на примере рассматриваемой далее фазовой диаграммы диоксида углерода. В случае воды повышение давления приводит к разрушению водородных связей, которые в кристалле льда связывают между собой молекулы воды, заставляя их образовывать громоздкую структуру. В результате разрушения водородных связей происходит образование более плотной жидкой фазы (см. разд. 2.2).


В точке У на кривой ВТ лед находится в равновесии с водой при температуре 273 К (О 0C) и давлении 1 атм. Она представляет собой точку замерзания воды при давлении 1 атм.

Кривая ST указывает давление пара воды при температурах ниже ее точки замерзания. Поскольку вода в нормальных условиях не существует в виде жидкости при температурах ниже ее точки замерзания, каждая точка на этой кривой соответствует воде, находящейся в метастабилъном состоянии. Это означает, что при соответствующих температуре и давлении вода находится не в своем наиболее устойчивом (стабильном) состоянии. Явление, которое соответствует существованию воды в метастабильном состоянии, описываемом точками этой кривой, называется переохлаждением.

На фазовой диаграмме имеются две точки, представляющие особый интерес. Прежде всего отметим, что кривая давления пара воды заканчивается точкой С. Она называется критической точкой воды. При температурах и давлениях выше этой точки пары воды не могут быть превращены в жидкую воду никаким повышением давления (см. также разд. 3.1). Другими словами, выше этой точки паровая и жидкая формы воды перестают быть различимыми. Критическая температура воды равна 647 К, а критическое давление составляет 220 атм.

Точка Г фазовой диаграммы называется тройной точкой. В этой точке лед, жидкая вода и пары воды находятся в равновесии друг с другом. Этой точке соответствуют температура 273,16 К и давление 6,03 1000 атм. Лишь при указанных значениях температуры и давления все три фазы воды могут существовать вместе, находясь в равновесии друг с другом.

Иией может образовываться двумя способами: из росы либо непосредственно из влажного воздуха.

Образование инея из росы. Роса-это вода, образующаяся при охлаждении влажного воздуха, когда его температура понижается, пересекая (при атмосферном давлении) кривую TC на рис. 6.5. Иней образуется в результате замерзания росы, когда температура понижается настолько, что пересекает кривую ВТ.

Образование инея непосредственно из влажного воздуха. Иней образуется из росы только в том случае, если давление пара воды превышает давление тройной точки Г, т.е. больше 6,03-10~3 атм. Если же давление паров воды меньше этого значения, иней образуется непосредственно из влажного воздуха, без предварительного образования росы. В таком случае он появляется, когда понижающаяся температура пересекает кривую AT на рис. 6.5. В этих условиях образуется сухой иней.

ФАЗОВАЯ ДИАГРАММА ДИОКСИДА УГЛЕРОДА

Эта фазовая диаграмма показана на рис. 6.6.


Она подобна фазовой диаграмме воды, но отличается от нее двумя важными особенностями.

Во-первых, тройная точка диоксида углерода находится при давлении, намного превышающем 1 атм, а именно при 5,11 атм. Следовательно, при любых давлениях ниже этого значения диоксид углерода не может существовать в форме жидкости. Если твердый диоксид углерода (сухой лед) нагревать при давлении 1 атм, он сублимирует при температуре 159 К (- 78 °С). Это означает, что твердый диоксид углерода при указанных условиях переходит непосредственно в газовую фазу, минуя жидкое состояние.

Во-вторых, отличие от фазовой диаграммы воды заключается в том, что кривая ВТ имеет наклон вправо, а не влево. Молекулы диоксида углерода в твердой фазе упакованы более плотно, чем в жидкой фазе. Следовательно, в отличие от воды твердый диоксид углерода имеет большую плотность, чем жидкий. Такая особенность типична для большинства известных веществ. Таким образом, повышение внешнего давления благоприятствует образованию твердого диоксида углерода. Вследствие этого повышение давления приводит к тому, что температура плавления тоже повышается.

фазовая диаграмма серы

В разд. 3.2 было указано, что если какое-либо соединение может существовать в нескольких кристаллических формах, то считается, что оно проявляет полиморфизм. Если же какой-либо свободный элемент (простое вещество) может существовать в нескольких кристаллических формах, то такая разновидность полиморфизма называется аллотропия. Например, сера может существовать в двух аллотропных формах: в виде а-формы, имеющей орторомбическую кристаллическую структуру, и в виде (3-формы, имеющей моноклинную кристаллическую структуру.

На рис. 6.7 показана температурная зависимость свободной энергии (см. гл. 5) двух аллотропных форм серы, а также ее жидкой формы. Свободная энергия любого вещества уменьшается при повышении температуры. В случае серы а-аллотроп имеет наиболее низкую свободную энергию при температурах меньше 368,5 К и, следова тельно, наиболее устойчив при таких температурах. При температурах от 368,5 P (95,5 0C) до 393 К (120 0C) наиболее устойчив р-аллотроп. При температурах выш< 393 К наиболее устойчива жидкая форма серы.


В тех случаях, когда какой-либо элемент (простое вещество) может существовать в двух или нескольких аллотропных формах, каждая из которых устойчива в определен ном диапазоне изменения условий, считается, что он обнаруживает энантиотропик Температура, при которой два энантиотропа находятся в равновесии друг с другом называется температурой перехода. Температура энантиотропного перехода серы пр: давлении 1 атм равна 368,5 К.


Влияние давления на температуру перехода показывает кривая AB на фазово диаграмме серы, изображенной на рис. 6.8. Возрастание давления приводит к повыпи нию температуры перехода.

Сера имеет три тройные точки -А, В и С. В точке А, например, в равновесии межг собой находятся две твердые и паровая фазы. Эти две твердые фазы являются двуъ энантиотропами серы. Штриховые кривые соответствуют метастабильным условия; Например, кривая AD представляет собой кривую давления пара а-серы при темпер турах выше ее температуры перехода.

Энантиотропия других элементов

Сера-не единственный элемент, проявляющий энантиотропию. Олово, наприм« имеет два энантиотропа - серое олово и белое олово. Температура перехода меж ними при давлении 1 атм равна 286,2 К (13,2 °С).


фазовая диаграмма фосфора

В тех случаях, когда какой-либо свободный элемент (простое вещество) существует в нескольких кристаллических формах, лишь одна из которых устойчива, считается, что он проявляет монотропию.

Примером простого вещества, которое обнаруживает монотропию, является фосфор. В разд. 3.2 было указано, что фосфор имеет три формы. Устойчивым монотропом является красный фосфор. При атмосферном давлении эта форма устойчива до температуры 690 К (рис. 6.9). Белый фосфор и черный фосфор метастабильные (неустойчивые) монотропы. Черный фосфор может существовать только при высоких давлениях, которые не показаны на рис. 6.9. Тройная точка фосфора находится при температуре 862,5 К (589,5 °С) и давлении 43,1 атм. В этой точке красный фосфор, жидкий фосфор и пары фосфора находятся в равновесии друг с другом.